Volumetric Measurement of Relative CBV Using T1-Perfusion-Weighted MRI with High Temporal Resolution Compared with Traditional T2*-Perfusion-Weighted MRI in Postoperative Patients with High-Grade Gliomas [FUNCTIONAL]


T1-PWI with high temporal resolution may provide a reliable relative CBV value as a valid alternative to T2*-PWI under increased susceptibility. The purpose of this study was to assess the technical and clinical performance of T1-relative CBV in patients with postoperative high-grade gliomas.


Forty-five MRIs of 34 patients with proved high-grade gliomas were included. In all MRIs, T1- and T2*-PWIs were both acquired and processed semiautomatically to generate relative CBV maps using a released commercial software. Lesion masks were overlaid on the relative CBV maps, followed by a histogram of the whole VOI. The intraclass correlation coefficient and Bland-Altman plots were used for quantitative and qualitative comparisons. Signal loss from both methods was compared using the Wilcoxon signed-rank test of zero voxel percentage. The MRIs were divided into a progression group (n = 20) and a nonprogression group (n = 14) for receiver operating characteristic curve analysis.


Fair intertechnique consistency was observed between the 90th percentiles of the T1- and T2*-relative CBV values (intraclass correlation coefficient = 0.558, P < .001). T2*-PWI revealed a significantly higher percentage of near-zero voxels than T1-PWI (17.7% versus 3.1%, P < .001). There was no statistically significant difference between the area under the curve of T1- and T2*-relative CBV (0.811 versus 0.793, P = .835). T1-relative CBV showed 100% sensitivity and 57.1% specificity for the detection of progressive lesions.


T1-relative CBV demonstrated exquisite diagnostic performance for detecting progressive lesions in postoperative patients with high-grade gliomas, suggesting the potential role of T1-PWI as a valid alternative to the traditional T2*-PWI.